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SUMMARY 

The principles of superposition of the first and second moments are applied to 
a model gas chromatographic system in order to develop the equations necessary to 
describe the instrumental contributions to band broadening. The total first moment 
is obtained from an equation which gives a straight line when the pressure drop across 
a capillary column is small. The expression for the time-based second moment is given 
by a hyperbola with an inverse dependence on the carrier gas Row-rate. For the 
volume-based second moment, the hyperbolic equation predicts a direct dependence 
on the carrier gas flow-rate. For systems in which the mixing volumes and the 
detector-electrometer time constants are small, the equations are linearized to give the 
same slopes as the asymptotes of the hyperbola and nearly the same intercepts. 

INTRODUCTlON 

Resolution on chromatographic colunlns is basically concerned with the width 
of the solute band, and the achievement of a differential rate of migration. Funda- 
mental band-broadening processes in chromatographic columns have been reviewed’ 
and treated theoretically by a number of worker@ and several models for these 
phenomena exist. Numerous studies in the literature have reported experimental 
mcasurcments of the column band-broadening processes4 such as axial diffusions. 
Knox and Salcem” reported the independent contributions to the plate height from 
processes occurring in the mobile and stationary phases. 

However, relatively little attention has been given to non-column or instru- 
mental band-broadening processes. Instrumental band-broadening may be minimized 
through good experimental technique, although the measurement of the magnitude 
of these effects has not been previously reported. For high precision and accuracy in 
experimental gas chromatography (GC) these effects should be measured and taken 
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into account. Their relative importance will be significantly increased in high-resolu- 
tion GC. Therefore, this work is directed toward the examination of the effect of the 
experimental system on chromatographic measurements. Expressions are derived for 
these band-broadening effects in terms of the instrumental contributions to the ob- 
served first and second statistical moments. 

Gel permeation chromatography (GPC) is an excellent example of the necessity 
of correcting for instrumental band-broadening effects in determining molecular 
weight averages. Various mathematical approaches have been used which treat the 
instrumental spreading function as a Gaussian operator’ and others have corrected 
for skewing’-” and axial dispersion effects”. 

Sternberg’s: statistical moment approach to instrumental band-broadening 
and peak shape analysis is the most comprehensive treatment of the topic which has 
appeared. While he does not develop the experimental verification of the methods for 
distinguishing the contributions of different broadening sources, the approach is suf- 
ficiently sound theoretically to be independent of the particular experiment. .- 

a As early as 1957, GiddingslJ showed that the basic GC peak shape should be 
Gaussian when operating in the linear part of the distribution isotherm for a 6 function 
input sample profile. Subsequently, the output response function for finite input sam- 
ple volumes was calculated by Laplace transform techniques14 and by considering the 
input as a series of 6 functions Is. The concept of an equivalent Gaussian sample inlet 
profile was proposed in order to simplify the description of the column operators on 
the response curves 16. Jacob and Guiochon” extended the theory of GC at finite con- 
centrations to the phenomena occurring during injection. Their work shows that the 
mobile phase velocity is changed while the sample is in the injection zone and second- 
ly, treats the discontinuities associated with rectangular injection profiles. High- 
precision sampling methods have been developed for the work reported here in order 
to give sample input functions of well defined shape which could be treated mathe- 
maticallyle*lg. 

Maynard and GrushkazO reported a systematic experimental study of the effect 
of dead volume on the efficiency of a GC system. Their results showed that for GC, 
pre-column dead volume can be a greater contribution to the height equivalent to a 
theoretical plate (HETP) than post-column dead volume. Solutes with small capacity 
ratios (k’) were shown to be more sensitive to dead volumes in the system than those 
with higher retention, while the effect of connecting tubing depended on the plate num- 
ber generated internally. Other workers have evaluated the effects of mixing devices21 
and turbulent floods. Sternberg’” differentiates between diffusion chamber and mixing 
chamber behavior and has proposed a new band-broadening mechanism based on 
laminar flow. 

The influence of the geometry and volume of chromatographic detectors has 
been studied by a number of investigators for the thermal conductivity detector because 
its response time effects are larger than ionization detectors and therefore more easily 
measured2”. 

The effects of the transducers and read-out devices may be readily calculated. 
The servo recorder and analog-to-digital converter (ADC) cannot be treated as linear 
systems and are not treated in this work. The recorder becomes a non-linear element 
when its maximum slewing rate is exceeded, when its zero does not match that of the 
preceding equipment, or when its full scale deflection is exceededz4. The band- 



INSTRUMENTAL CONTRIBUTIONS TO GC BAND BROADENING. 1. 331 

broadening contribution of the ADC cannot be considered to be limiting with any 
reasonable sampling rate and a digital data logger for this purpose has been previously 
describedz5. The relative errors in band-broadening measurements introduced by 
digital data acquisition systems and the data reduction algorithms have been cvalu- 
ated26-28. In their application of numerical Laplace transforms to chromatographic 
peak analysis for the calculation of statistical moments, Yamaoka and NakagawaZY 
showed that the ADC conversion error was negligible when the transform was defined 
in the form of Simpson’s rule. 

Reilley and co-workers14*30 used discrete convolution methods to calculate the 
profile resulting from the operation of a column (a Gaussian operator) on several 
input profiles. These calculations are complicated by the interdependence of some of 
the integral forms encountered. In a later paper 31, they developed the use of the 
Laplace transform to calculate the response transform of a complex system and 
showed that the moments may be obtained directly from the response transform with- 
out inversion, Operational methods for linear systems were employed which were es- 
sential to the development of their discussion of chromatographic peak profiles and 
to Sternberg’slz treatment of the instrumental band-broadening. 

The power and high accuracy of using statistical moments for peak profile 
characterization has been widely demonstrated in the chromatographic literature as 
it represents an approach which is theoretically sound and can be related back to the 
basic mass-balance equations for linear and non-linear non-equilibrium systems. A 
basic understanding of’this approach can be found in the literature29-‘2~33. Statistical 
moments have been used to develop a dynamic gas adsorption theoryJ3, detect over- 
lapping chromatographic peaksJ4, analyze exponentially modified Gaussians35, simu- 
late non-linear36*37 and linear equilibrium 38 GC, develop the theory of multiple phase 
chromatography jg, deconvolve peak shape parameters from functions generated by 
curve fitting40, and mode1 skewing behavior4’. 

The work reported here concerns the development of a model for a chroma- 
tographic system in which equations are derived for the total first and second moments 
of the model using the techniques developed by Ashley and Reilley3’ and Sternberg12. 
The value of this approach is determined by the accuracy with which the model repre- 
sents a real chromatographic system. 

DISCUSSION 

The chromatographic elution profile may be regarded as a composite distribu- 
tion function which results from the interaction of several independent distributions 
or operators. One of these is the sorption column which is usually assumed to have 
the properties of a Gaussian operator. In order to treat only the extra-column effects 
and to avoid the complications of non-ideal sorption behavior, the sorption column 
will not be considered here. Then the output distribution function should be a true 
representation of the sample input profile modified by the instrumental contributions. 
Since the areas in which a knowledge of the instrumental contributions is desirable 
are also the areas in which these contributions must be kept to a minimum, the 
presence of broadening due to sorption would make the treatment of these instru- 
mental contributions very difficult. Once the extra-column contributions have been 
determined, then on-column processes may be studied in detail with higher accuracy. 
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Mome~tts of ciistributiort jihctions 
The reference point for the calculation of the moments of a distribution must 

be clearly specified to satisfactorily characterize that distribution. In GC the two 
reference points of interest are at t = 0, and tllecenter of gravity ofthe peak of interest. 
TJle zero of the time scale is ordinarily defined as the time when the center of gravity 
of the sample profile enters the column. This is a convenient and well defined time. 
since the customary input profile is assumed to be a Dirac delta function. Therefore 
it is not necessary to account for the sample width. In high-speed chromatography. 
or in the absence of a sorption column, it will be seen that the input profile Jlas a finite 
width and must be considered in the treatment of the experimental data. 

The moments are calculated from the normalized defining integrals: 

zeroth moment: A - JS(t) dt (I) 

first moment: i = 
St S(t) dt 

SW) dt 

second moment: qj2 = 
Jr2 S(t) dt 

SW) dt 

(2) 

(3) 

For the peak profile function. y = S(t), A is the area of the peak profile, i is the first 
moment or the location of the center of gravity of the peak profile, and a02 is the sec- 
ond moment with respect to time zero. Nothing is assumed about the shape of the 
peak profile at this point. The only requirement is that the integrals in eqns. J-3 exist 
and that they may be evaluated either in closed form or numerically. 

The second moment is most readily interpreted if it is measured about the 
center of gravity of the profile ratlier than from the time zero point which is experi- 
mentally observed. TJle defining integral for the second moment may be re-written to 
give the second moment about the center of gravity of the peak profile as 

SO - O2 s(t) dt u2 __ 

SW) dt 

where cr2 designates the second moment about the center of gravity. Thus by using 
eqn. 3, the normalized second moment will be a measure of the width of the peak 
profile. By expanding the squared term in eqn. 4 and substituting eqns. 1-3 we have 

(32 = a02 - p (5) 

which allows the calculation of the second moment for a single component distribu- 
tion about the center of gravity from the second moment about t = 0 and the first 
moment of the peak. Sternberg I2 derived a similar equation by defining the prohlc 
function as a sum of several component proJilc futlctions. 

The general model of the chromatographic system which will be employed in 
this discussion is shown in Fig. I. Some chromatogruphic systems will have contribu- 
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Input ’ Response 

IS’ Moments 

Fig. I. Block diagram of u model GC system for obtaining the instrumcntnl contributions to band 
broadwing from the tirst awl second moments. 

tions which are not included in this model such as broadening due to sudden diameter 
changes in the gas flow path or slow vaporization of u liquid sample. However, such 
effects can generally be reduced or eliminated by improvecl design or experimental 
technique. 

Sternberg12 developed the superposition principle for 21 system operating on an 
input to produce the observed output from the linearity properties of the Laplacc 
transform. However, it will be more desirable from an experimental point of view to 
develop the superposition principles for the first and second moments. These princi- 
ples may also be stated as the additivity rules for independent first and second mo- 
ments. 

If we Ict F(t) be a function composed of two linearly indepcndcnt functions 
F,(r) and F,(t). then 

F(t) = F,(t) -I- F,(r) 

and the Laplnce transform of F(t) is given by f(s). 

(6) 

f(s) = f1(s) * f&) (7) 

The Nth moment with respect to I = 0 may bc obtained by taking the limit as the 
Laplace variable, s, approaches zero for the Nth derivative of the characteristic func-“ 
tion. This result is normalized by dividing by the area or by the limit as s approaches 
zero of the characteristic function. Thus, for the general case, 

lim f,l(N) (s) 
vN,f’ = (--l)N “‘;i,.& f(s) (8) 

s - 0 

whcrc f(s) is a composite function or a single distribution. Applying eqn. 8, for the 
case of N = I, to eqn. 7 

VI = VI.1 + l’l,Z (9) 
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so that the total first moment is the sum of tile first moments of the independent 
contributions. Similarly, applying eqn. 8 for N = 2 

v2 = y2.1 -I- v2.2 (10) 

which gives the rule for the addition of second moments. These functions must be 
linear, independent components. This requires a thorough understanding of the phys- 
ical interaction of the components of the instrument because complex situations may 
exist where several mechanisms which may not be independent in behavior are in- 
volved. Consequently, the functions describing their behavior will not be indepen- 
dent. For example, the flame ionization detector has a contribution due to the finite 
sensing volume and an exponential contribution due to its resistance and capacitance. 

The contributions of the components of this model are of three types: a rec- 
tangular distribution, an exponential distribution, and a Gaussian distribution. Each 
of these may arise from several different physical mechanisms and will be considered 
in light of the model used. The functional form of these contributions and their first 
two moments are listed in Table I. 

TABLE I 

MOMENTS OF INDIVIDUAL DISTRIBUTIONS 

Tvpc Of 
_.... . ._. _... .-_. .-... ..__ -. 

dkrilwtiort 
Fiotctiotml 1st 2trd 
form Mortrerrt Motm?rrt 

__.--.~.--~...--.-~-~-.~~--~.___ _ __ __.. _._____ 

Rectangulnr s(t) = so tn tz 
o<t<t, 

.- 
2 -is- 

Exponential s(t) = so cxp (-t/t) 7r -9 

Gaussian i f-72 

_. ---------. -..-_- ..__.. -- _^... -__-_.. _ _..--_. ._..__ - _... .._ 

A rectangular component distribution approaches the idea1 injection profile 
because it may be regarded as the limiting form of a Dirac delta function. Although 
difficult to obtain in practice, a profile whose width is small with respect to other 
broadening factors is an excellent approximation to a Dirac delta function. 

SaiddZ and Sternberg12 pointed out that a detector with a finite detector sensing 
volume will introduce additional abnd broadening as a rectangular operator. If the 
sensitive volume of the detector is designated by-V, and the flow-rate through this 
volume by I;;, then the time I~, associated with this volume is given by, 

Vd f,, = - 
Fd 

. 
(1’;) 

for conditions of laminar flow. The second moment contribution of this component 
is given by 

ItI2 Vd2 $=--=- 
12 121;;2 (12) 
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The most important sources of an exponential contribution to band broadening 
in a well designed chromatographic system are the mixing chambers, dWusion cham- 
bers. slow sample vaporization, and resistor-capacitor networks in the electrical 
circuits. The exponential time constant of the mixing chambers, t. depends on the 
volume of the chambers, V, and the Ilow-rate, F: 

V 
‘G=- 

F (13) 

Hence it is desirable to maintain large flow-rates through sections of the experimental 
system which behave as mixing chambers. Similarly, the electrical effects may be 
treated collectively and discussed in terms of their equivalent circuit. Sample vaporizn- 
tion contributions can be eliminated by limiting such studies to gas samples, and dif- 
fusion chambers may be similarly neglected by careFul design of the instrumentation. 

For the case treated here, no sorption is assumed in order to measure only the 
instrumental band broadening. The only Gaussian operator may then be assumed to 
be due to the longitudinal diffusion in the capillary tubing. From Golay’s4” equation 
For a non-sorbed species, 

da,: _ 2 D, r2 tt, 

dz l/O ‘- 24D, (14) 

where r is the radius of the tube, 21, the outlet carrier-gas velocity, and D, the interdif- 
fusion coefi?cie.nt for the sample in the carrier gas, the time-based second moment 
may be obtained by multiplying the length-based second moment by the square of the 
ratio of the cross-sectional area of the column. A, to the volumetric flow-rate, F 

at 2=a2 A 2 
L ( ) 7 (15) 

By correcting for the pressure drop through the capillary by means of the average 
column pressure, p, then For a uniform tube of length L, eqn. 14 becomes 

at2 = ($-)(+ -I- &-) (16) 

This expression may be simplified by expressing the volumetric flow-rate in terms of 
the linear gas velocity: 

a,2 = (_E_,” (z$_ + _Y!!L) 
24 D, (17) 

This equation permits the calculation of the contribution of a capillary column to 
band broadening From the dimensions of the tube, the interdiffusion coefficient, and 
the pressure drop throughout the tube. 

Conlposition ot espcrimenInll_v obsewed mo~rie~lts 
In order to develop equations which represent the contributions of the cxperi- 
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mental system, the principles of superposition of the first and second moments will 
be applied to the elemen’ts of the model in Fig. 1. These equations are exact for the 
model, but will fit the experimental data only as well as the model describes the actual 
apparatus. 

The experimentally measured first moment corresponds to ‘the uncorrected 
retention time of the system. It includes the transport time for a non-sorbed species 
through the column, I,,, which may be calculated by 

nriL 
rA = J F. 

(If9 

where J is the compressibility correction factor. The experimentally observed first 
moment also includes contributions from the finite sample size, the time constant of 
the detector and associated electronics, t,. mixing chambers, t,,,, and the sensitive 
volume of the detector, i,. Since there is no way of distinguishing between mixing 
chambers located in different parts of the apparatus, the mixing volumes are treated 
together for the conditions which prevail at the outlet of the column. 

Adding the first moments of the contributions of the model we obtain 

. 
fR = i,, + -+- -t- z,,, -I- f-d -I- t, (1% 

By substituting eqns. 12. I3 and 18 and equations from Table I in terms of the ,*. 
physical constants, eqn. I9 may be given by 

(20) 

for the case where the hydrogen flow-rate to the detector is always held equal to the 
carrier gas flow-rate so that /;; = 2/;b. By rearranging eqn. 20 into flow-dependent 
and flow-independent terms. an analytically useful form is obtained. 

t 
R 

_ l 
( 
7c r2 L ._I_ v --- 

Fo J 111 _t_ 3 
2 ) ( 

-I- t, -j- +) (21) 

Eqn. 21 is the equation of a straight line and ~SSUIIICS that J is not a function of the 
outlet flow-rate. Only under conditions of a small pressure drop across the column 
will this be true. For a column with a small pressure drop, J may be taken as a constant 
and assigned a value equal to its mean value over the range of experimental conditions. 
By plotting the experimental first moment over a wide range of flow-rates, this varia- 
tion in J will introduce a small error in the slope, but a larger error will appear in the 
intercept due to the extrapolation. 

Another difliculty with eqn. 21 results from the great difference in magnitude 
of the volume of the column and the other volume terms in the slope expression. The 
volume of the capillary column should be in the order of several millilitres while the 
mixing volume and the sensitive volume of the detector will be only a few microlitres. 
The error in measuring the length and diameter of the capillary column can easily be 
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equal to or larger than the other volume terms. The magnitude of the transport time 
resulting from this column is such that its variation due to carrier gas flow-rate fluctua- 
tions may exceed the first moment contributions of the detector and the mixing cham- 
bers. Therefore, the relative magnitudes of the numbers involved, combined with the 
conditions of the extrapolation, makes the calculation of the exponential time con- 
stant and the sample width from the intercept very dubious. 

The problems of the large differences in the magnitudes of the volumes and 
the dificulty with the compressibility correction in the analysis of the first moments 
may be avoided by applying the principle of superposition of variances to the model 
in Fig. I. 

n12,, = ,,,2 -I- r&2 -I- t,,2 -t- t,2 -I- f&,2 (22) 

In this equation, crDZ represents the time-based second moment contribution of longi- 
tudinal diffusion and the velocity profile within the capillary column. It can be seen 
from eqn. 17 that this contribution is very small at large carrier gas: velocities and can 
be tieglected by proper design of the experiment. Substitution of eqns. 12 and 13 and 
equations from Table I into cqn. 22 gives 

This equation may be more readily handled if a change of variable is made 

r’l,” = 1?12., 

so that eqn. 23 becomes 

I 
PC 2 ( Vd2 -= - _.. - 

1;;2 vm2 1 48 ) 
-1- (t,2 f a,‘) 

(23) 

(24) 

(25) 

By rearranging eqn. 25. it may bc recognized as the equation of a hyperbola of the 
form 

so that 

From the resulting expression 

[ 

I #IL, - - 4, ( 
i 

v,,,2 -I- 
V’ 4 

-e 
48 ) I[ 

1 
I”, + 7 

( 
v,,,2 -t 

V$ 
- z 0 

0 48 
>I 

(27) 

(28) 
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tile equitions of the asymptotes are obtained by setting the constant term to zero and 
factoring the resulting equation : 

(29) 

Eqns. 29 and 30 are the equations of two straight lines which pass through the origin 
and have slopes of plus and minus ( V,,,2 -I- Vd2/48)*. These lines pass through the first 
alld third quadrant for eqn. 29 and through the second and fourth quadrant for eqn. 
30. Since negative values have no physical significance for the variables in these 
equations, only eqn. 29, for positive I;b, is of interest. 

In order to retain the interpretation of the intercept as the quadratic sum of 
the exponential time constant and the sample width in this linearization, the square 
root of the constant term of the hyperbola (eqn. 25) is added to eqn. 29. This equation 
will produce a line with the same slope as the asymptote of the hyperbolic form and 
the same intercept as the hyperbola: 

(31) 

Eqn. 23 may be converted to the volume-based second moment by 

1772.v = Fo2 w72.1 (32) 

in order to change the flow dependence of the terms of eqn. 31 

In&, == ( vm2 -r_ -g) -!- i;b2 (a,2 -I- t,q (33) 

By making a change of variable as in eqn. 24, 

Pv2 = 1172.v . (34) 

we obtain the r&ulting equation 

Cb2 - VCi2 &” (OS2 + rc2) = v,2 + -@- (35) 

which is also the equation of a hyperbola. It should be noted that in this case the 
second-moment contribution of the gas sampling valve is not a function of the 
carrier gas flow-rate. 

By a procedure analogous to that applied to eqn. 25, an approximation may 
be developed for eqn. 35: 

,LL” = Fo (CT,2 + r,Z)L -I- ( (36) 
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TABLE II 

COMPARISON OF HYPERBOLIC EQUATION WLTH LLNEAR APPROXIMATION 
.-_ ..- .._ - ..-._ .__. _ _.-. ._.. ._ 

_. 
;rllmc) 

HyperIm tic Litrenr Relativ> 
form form wror (‘x) 

I(,, (1~1) N” fpl) 
..- ..- ..-... ._ _-_._ -_- ..__. - __._.._.._ _. 

0 10.0 10.0 0’ 
0. I 10.4 12.9 24.0 
1 .o 30.5 38.9 27.5 
2.0 58.5 67.8 IS.9 
3.0 87.1 96.6 10.9 
4.0 I lb.0 126.0 9.5 

10.0 289.0 299.0 3.5 
_. _. _. ~._ _ -. _. _ ._ _. 

This conversion allows the constants which appeared in the intercept term in eqn. 31 
to be obtained from the slope of a least squares fit to the experimental data. Thus the 
large errors which could appear in the intercept due to a small error in the slope of 
the line are avoided. 

The behavior of eqn. 36 may be evaluated by assuming a rectangular input 
function of lOO-msec width (a, z = 8.34, lo2 msecz), the sensitive detector volume and 
the mixing volumes to be 10,ul together, and a total time constant of IO msec. Sub- 
stituting these values into eqn. 36 gives 

f% 
2 = 8.35. 1O-J Fez -I- 1. lo-lo (37) 

I I I’ 1 

I 2 3 4 

% cm?4ec 

Fig. 2. Comparison of the hyperbolic form of the equation for the volume-based second moment 
(solid lint) with the linearization form of the equation (broken lino) as a function of carrier gas volu- 
metric flow-rate, I;o. 
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where /;b is in liters/set and pa2 is in (Iiters)2. The values for the volume-based second 
moment were calculated as a functoin of carrier gas flow-rate and are tabulated in 
Table 11. These data are plotted in Fig. 2 with the line which is derived from the 
linearization approximation : 

PI. = 2.89*10-3 /;; -I- I * IO-5 (38) 

This line is seen to have the same slope as the asymptote and the same intercept as 
the hyperbola. The hyperbolic form of the equation departs from a straight line only 
in the region of very small flow-rates. Similarly, tile linear form differs significantly 
from the hyperbolic form only at low rates. Since the parameters of interest are the 
physical constants of the system, the restriction of the linear form to large flow-rates 
is not detrimental. 

The constants which characterize the instrumental contributions to band broad- 
ening should be evaluated from the slopes of the linear form of the equation because 
the. hyperbolic forms asymptotically approach these slopes. After these constants 
have been evaluated at high flow-rates, they may be used to calculate tile band broad- 
ening at normal flow-rates. 
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